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in generalized 

S U M M A R Y  
This paper demonstrates that the "equilibrium conditions" of generalized geometric programming can be interpreted 
as constrained derivatives of a transform of the dual program to the generalized geometric programming primal. 
Thus, iterative procedures employing these conditions amount to direct solution of the necessary conditions for a local 
minimum of the transformed dual expressed in constrained derivative form under the constraint qualification of 
nonsingularity and nondegeneracy. 

1. Introduction 

In an earlier paper, Passy and Wilde [1] show that the generalized geometric programming 
primal problem : 

Minimize 

Subject to 

where 

00(x) 
a,,,[gm(X)]""E 1, m =  1, . . . ,M  

x > 0  
Tm 

gin(x) = Z am, C,., I ]   .mt~ 
t= l  n=l  

and the a,,u, am have assigned values, either + 1 or - 1, 

can under suitable conditions be solved by simultaneous solution of a set of coupled linear and 
nonlinear equations. In particular, if a strictly positive solution co, t , m = 1 . . . . .  M ; t = 1, ..., Tm 
to the following N + 1 linear equations 

To 

aOtcoO t ~ a 0 , 

M Tm 

~ a,,,tco,,ta,,,,=O, n = l  . . . .  , N ,  
m=l t = l  

and the following T - ( N  + 1) nonlinear "equilibrium" conditions 

f i r m  C~,. q . . . . . .  M Tm 
[ I  - -  = 1--[ 1--[ [C,.t] ""w"t' , J = 1 . . . . .  T - ( N +  1), (1) 

m=O t=l L~ m=o t=l 

where the V.,q are the T - N -  1 homogeneous solutions of 
To 

2 aotVoq = O, (2 / 
t= l  
M Tm 

2 Z a,,,ta,,,t,,V,,,j=O, j = l ,  2 . . . .  , T - N - I ,  (3) 
m=0 t = l  

can be found, then a primal solution vector 2 may be recovered directly. This is accomplished 
by solving the following equations: (which are linear in the logarithms of the x.) 
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ao., In x,, = In f(~176 t , 
n = l  

2 atom In x, = In - -  , 
n = l  L(Dmo Cmt J 

where 

(ro FI 
t=l \ ~ / 

and 

t =  1 . . . .  , To, (4) 

t = l , -  .... Tm, m = l  . . . . .  M ,  

a,,,to),,,, 1 ao , 

(5) 

Trn 

CO,nO = (rm ~ (rm, CO,,,t , m = 1 . . . .  , M . (6) 
t = l  

This approach has been exploited in [1] and [4] to solve the primal problem using suitable 
numerical equation solving routines. The point of this note is to demonstrate that the above 
T -  N -  1 equilibrium conditions can in fact be interpreted as the constrained derivatives [5] 
of a transformed dual problem : 

Minimize f((5) = -(ro In (rod(N), 

Subject to 
Tm 

amtrn,,t-amCO,, o = O,  m = O, 1 . . . .  , M ,  (7) 
t = l  

M Tm 

~ a,.ta,.t .co,.t  = O,  n = 1 . . . . .  N ,  (8) 
m = 0  t = l  

comte>0, t = l  . . . . .  T m, m = 0 , 1  . . . . .  M ,  
with COo0 --- 1, 

under the constraint qualification of non-degeneracy and nonsingularity [5]. As a consequence 
of  this identification, it is apparent that the solution procedures of [1], [2], and [4] are all 
equivalent. However, because a constrained derivative construction can be employed under 
less restrictive constraint qualifications [3], it appears that the constrained derivative formula- 
tion [2] is to be preferred. 

2. Analysis 

Consider a nonlinear programming problem (NLP) 

Minimize f (x) , 

Subject to gk(X) = O,  k = 1 . . . . .  K ,  

x ~ O,  x e R  N . 

A point 20 satisfying the above constraints is said to be nonsingular  if the gradients of the 
constraints at 20 are linearly independent. The point is further said to be nondegenerate  if the 
Jacobian of these constraint gradients can be partitioned into K linearly independent columns 
corresponding to strictly positive components of 20 . 

Let J be the submatrix consisting of the K columns corresponding to the components of 
~o. Let C be a matrix containing the remaining columns and let (s, d) be the corresponding 
partition of the components of the vector )?o. Following [5], necessary conditions for a non- 
degenerate, non-singular point 9~o to be a local minimum for N L P  are that 

5 f _ _  a f  O f . _  1 
(i) 6 d - ~ d  & "~ C > O  

and 

(ii) ~ d  k = O ,  k =  I , . . . , N - K .  
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Note that if all dk >0, then, from complementary slackness condition (ii), it follows that 
6f/6d=O. 

The above result can be applied immediately to the transformed dual problem, provided the 
required partial derivatives are evaluated. 

To this end observe that 

ao In aod(~o) = 2 2 amtComt ln 
m=O t=1 L ~~ d 

Consequently, for any e),.t 

I L .,l (~gOm t - -  amt In + amt fDmt L fDrat J LCmtOJmO] [ (Omt (Dmt J 

Tm (~.j(J)mj fCmjamamt-1. 
'= mCmj~ L o~.j ] 

j c= t  

However, because of the definition of ~o,, o in equations [2], all terms except the first cancel 
and thus 

. - am, l n  = a m t l n l - ~ l  (9)  
~OOmt \ oJ,,t / \CmtOZmOJ 

This result will now be exploited in the following manner. 
Let ~ be a vector with ordered components (~o1, COo2 . . . .  ,~Ooro, OJll, ~012 . . . .  ,C01~1, 

O921, ..., ~M,TM)" Let the matrix H consist of the coefficients of the equality constraints (7) 
with m = 0, and (8). If H has maximal row-rank and if all co,, t > 0, then any partition (J, C) of H 
such that J is square and nonsingular is acceptable for use in the calculation of the constrained 
derivatives. Without loss of generality assume that the columns of J correspond to the first 
N + 1 components of the vector ~. Further,let/~ be the diagonal matrix with diagonal elements 
amt and let g (r be the row vector consisting of elements In [fOmt/(Cmt gOm0)] , all ordered as the 
components of o5 are ordered. Let I be an identity matrix of dimension T -  N -  1. 

The constrained derivative then becomes 

ad - Od ~sa C = \ Os ~ = gI. \ I "/ " 

Assuming that all co,.t and all co,. o are positive, then the necessary conditions simply require 
that ~f/Od = 0 or, 

bf  gI~ O . (10) 
6d 

The claim is that these conditions are equivalent to equation (1). To see that this is true, 

observe that the columns of ( -  J ;  1 C) are linearly independent (because of the presence of 

the identity matrix) and orthogonal to (J, C) since' 

(J,C) ( - J - ~ C )  = - C + C = O .  
: I 

But the N +  1 rows of(J, C) are just the coefficients of equations (2) and (3). Hence, the T - N -  1 

linearly independent columns of ( -  J ;1C)  span the null space of (J, C) and thus are equivalent 

to the T -  N -  1 homogeneous solutions V,.tj of equations (2) and (3). This construction provides 
a convenient method of calculating the homogeneous solutions. The equivalence between (1) 
and (10) follows upon taking the natural logarithm of equation (10): 

M Tm 

E amtVmtiln(~mt ~ = 0 '  j = l  . . . . .  T - N - 1 .  
m = O  t =1  \Cmt(DmOJ 
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Finally, note that if the ~omt corresponding to the columns of J are positive, but some of the 
remaining COrot are zero, then the constrained derivative (9) may be positive for those components 
d, which are zero. Hence equation (10) must be supplemented with the complementary slackness 
condition drf f /fdr=O. 
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