Constrained derivatives and equilibrium conditions in generalized geometric programming

D. T. PHILLIPS and G. V. REKLAITIS

School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA (Received April 1, 1974)

SUMMARY

This paper demonstrates that the "equilibrium conditions" of generalized geometric programming can be interpreted as constrained derivatives of a transform of the dual program to the generalized geometric programming primal. Thus, iterative procedures employing these conditions amount to direct solution of the necessary conditions for a local minimum of the transformed dual expressed in constrained derivative form under the constraint qualification of nonsingularity and nondegeneracy.

1. Introduction

In an earlier paper, Passy and Wilde [1] show that the generalized geometric programming primal problem:

Minimize $g_0(x)$ Subject to $\sigma_m [g_m(x)]^{\sigma_m} \le 1$, m = 1, ..., M

r > 0

where

$$g_m(x) = \sum_{t=1}^{T_m} \sigma_{mt} C_{mt} \prod_{n=1}^{\xi} x_n^{a_{mtn}}$$

and the σ_{mt} , σ_m have assigned values, either +1 or -1,

can under suitable conditions be solved by simultaneous solution of a set of coupled linear and nonlinear equations. In particular, if a strictly positive solution ω_{mt} , m=1, ..., M; $t=1, ..., T_m$ to the following N+1 linear equations

$$\sum_{t=1}^{T_0} \sigma_{0t} \omega_{0t} = \sigma_0 ,$$

$$\sum_{m=1}^{M} \sum_{t=1}^{T_m} \sigma_{mt} \omega_{mt} a_{mtn} = 0 , \quad n = 1, ..., N$$

and the following T-(N+1) nonlinear "equilibrium" conditions

$$\prod_{m=0}^{M} \prod_{t=1}^{T_{m}} \left[\frac{\dot{\omega}_{mt}}{\omega_{m0}} \right]^{\sigma_{mt}\omega_{mt}} = \prod_{m=0}^{M} \prod_{t=1}^{T_{m}} \left[C_{mt} \right]^{\sigma_{mt}V_{mtj}}, \quad j = 1, ..., T - (N+1), \quad (1)$$

where the V_{mtj} are the T-N-1 homogeneous solutions of

$$\sum_{t=1}^{I_0} \sigma_{0t} V_{0tj} = 0, \qquad (2)$$

$$\sum_{m=0}^{M} \sum_{t=1}^{T_m} \sigma_{mt} a_{mtn} V_{mtj} = 0, \quad j = 1, 2, ..., T - N - 1, \qquad (3)$$

can be found, then a primal solution vector \tilde{x} may be recovered directly. This is accomplished by solving the following equations: (which are linear in the logarithms of the x_n)

$$\sum_{n=1}^{N} a_{0tn} \ln x_n = \ln \left[\frac{\omega_{0t} d(\tilde{\omega})}{C_{0t}} \right], \quad t = 1, ..., T_0 , \qquad (4)$$

$$\sum_{n=1}^{N} a_{mtn} \ln x_n = \ln \left[\frac{\omega_{mt}}{\omega_{m0} C_{mt}} \right], \quad t = 1, \dots, T_m, \ m = 1, \dots, M ,$$
(5)

where

and

$$d(\tilde{\omega}) \equiv \sigma_0 \left[\prod_{m=0}^{M} \prod_{t=1}^{T_m} \left(\frac{C_{mt} \omega_{m0}}{\omega_{mt}} \right)^{\sigma_m \omega_{mt}} \right]^{\sigma_0},$$

$$\omega_{m0} \equiv \sigma_m \sum_{t=1}^{T_m} \sigma_{mt} \omega_{mt}, \quad m = 1, ..., M.$$
(6)

This approach has been exploited in [1] and [4] to solve the primal problem using suitable numerical equation solving routines. The point of this note is to demonstrate that the above T-N-1 equilibrium conditions can in fact be interpreted as the constrained derivatives [5] of a transformed dual problem:

Minimize
$$f(\tilde{\omega}) = -\sigma_0 \ln \sigma_0 d(\tilde{\omega})$$
,
Subject to
$$\sum_{t=1}^{T_m} \sigma_{mt} \omega_{mt} - \sigma_m \omega_{m0} = 0, \quad m = 0, 1, ..., M,$$

$$\sum_{t=1}^{M} \sum_{t=1}^{T_m} \sigma_{mt} \omega_{mt} - \sigma_m \omega_{m0} = 0, \quad m = 1, ..., M$$
(8)

$$\sum_{m=0}^{\infty} \sum_{t=1}^{m} \sigma_{mt} a_{mtn} \omega_{mt} = 0, \quad n = 1, ..., N,$$

$$\omega_{mt} \ge 0, \quad t = 1, ..., T_m, \quad m = 0, 1, ..., M,$$
with $\omega_{00} \equiv 1,$
(8)

under the constraint qualification of non-degeneracy and nonsingularity [5]. As a consequence of this identification, it is apparent that the solution procedures of [1], [2], and [4] are all equivalent. However, because a constrained derivative construction can be employed under less restrictive constraint qualifications [3], it appears that the constrained derivative formulation [2] is to be preferred.

2. Analysis

Consider a nonlinear programming problem (NLP)

 $\begin{array}{ll} \text{Minimize} & f(x) \,, \\ \text{Subject to} & g_k(x) = 0 \,, \qquad k = 1, \, \dots, \, K \,, \\ & x \geqslant 0 \,, \qquad \qquad x \in R^N \,. \end{array}$

A point \tilde{x}^0 satisfying the above constraints is said to be *nonsingular* if the gradients of the constraints at \tilde{x}^0 are linearly independent. The point is further said to be *nondegenerate* if the Jacobian of these constraint gradients can be partitioned into K linearly independent columns corresponding to strictly positive components of \tilde{x}^0 .

Let J be the submatrix consisting of the K columns corresponding to the components of \tilde{x}^0 . Let C be a matrix containing the remaining columns and let (s, d) be the corresponding partition of the components of the vector \tilde{x}^0 . Following [5], necessary conditions for a non-degenerate, non-singular point \tilde{x}^0 to be a local minimum for NLP are that

(i)
$$\frac{\delta f}{\delta d} \equiv \frac{\partial f}{\partial d} - \frac{\partial f}{\partial s} J^{-1} C \ge 0$$

and

(ii)
$$\frac{\delta f}{\delta d_k} d_k = 0$$
, $k = 1, ..., N - K$.

Journal of Engineering Math., Vol. 8 (1974) 311-314

Note that if all $d_k > 0$, then, from complementary slackness condition (ii), it follows that $\delta f / \delta d \equiv 0$.

The above result can be applied immediately to the transformed dual problem, provided the required partial derivatives are evaluated.

To this end observe that

$$\sigma_0 \ln \sigma_0 d(\tilde{\omega}) = \sum_{m=0}^{M} \sum_{t=1}^{T_m} \sigma_{mt} \omega_{mt} \ln \left[\frac{C_{mt} \omega_{m0}}{\omega_{mt}} \right]$$

Consequently, for any ω_{mt}

$$\frac{\partial f(\tilde{\omega})}{\partial \omega_{mt}} = -\sigma_{mt} \ln \left[\frac{C_{mt} \omega_{m0}}{\omega_{mt}} \right] + \sigma_{mt} \omega_{mt} \left[\frac{\omega_{mt}}{C_{mt} \omega_{m0}} \right] \left\{ \frac{\sigma_m \sigma_{mt} C_{mt}}{\omega_{mt}} - \frac{C_{mt} \omega_{m0}}{\omega_{mt}^2} \right\} \\ + \sum_{\substack{j=1\\j\neq t}}^{T_m} \sigma_{mj} \omega_{mj} \left[\frac{\omega_{mj}}{C_{mj} \omega_{m0}} \right] \left[\frac{C_{mj} \sigma_m \sigma_{mt}}{\omega_{mj}} \right].$$

However, because of the definition of ω_{m0} in equations [2], all terms except the first cancel and thus

$$\frac{\partial f(\tilde{\omega})}{\partial \omega_{mt}} = -\sigma_{mt} \ln \left(\frac{C_{mt} \omega_{m0}}{\omega_{mt}} \right) = \sigma_{mt} \ln \left(\frac{\omega_{mt}}{C_{mt} \omega_{m0}} \right).$$
(9)

This result will now be exploited in the following manner.

Let $\tilde{\omega}$ be a vector with ordered components $(\omega_{01}, \omega_{02}, ..., \omega_{0T_0}, \omega_{11}, \omega_{12}, ..., \omega_{1T_1}, \omega_{21}, ..., \omega_{M,T_M})$. Let the matrix H consist of the coefficients of the equality constraints (7) with m = 0, and (8). If H has maximal row-rank and if all $\omega_{mt} > 0$, then any partition (J, C) of H such that J is square and nonsingular is acceptable for use in the calculation of the constrained derivatives. Without loss of generality assume that the columns of J correspond to the first N + 1 components of the vector $\tilde{\omega}$. Further, let I_{σ} be the diagonal matrix with diagonal elements σ_{mt} and let $g(\tilde{\omega})$ be the row vector consisting of elements $\ln \left[\omega_{mt}/(C_{mt}\omega_{m0})\right]$, all ordered as the components of $\tilde{\omega}$ are ordered. Let I be an identity matrix of dimension T - N - 1.

The constrained derivative then becomes

$$\frac{\delta f}{\delta d} = \frac{\partial f}{\partial d} - \frac{\partial f}{\partial s} J^{-1} C = \left(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial d}\right) \begin{pmatrix} -J^{-1} C \\ I \end{pmatrix} = g I_{\sigma} \begin{pmatrix} -J^{-1} C \\ I \end{pmatrix}.$$

Assuming that all ω_{mt} and all ω_{m0} are positive, then the necessary conditions simply require that $\partial f/\partial d = 0$ or,

$$\frac{\delta f}{\delta d} = g I_{\sigma} \begin{pmatrix} -J^{-1} C \\ I \end{pmatrix} = 0.$$
⁽¹⁰⁾

The claim is that these conditions are equivalent to equation (1). To see that this is true, observe that the columns of $\begin{pmatrix} -J^{-1}C\\ I \end{pmatrix}$ are linearly independent (because of the presence of the identity matrix) and orthogonal to (J, C) since

$$(J, C) \begin{pmatrix} -J^{-1}C \\ I \end{pmatrix} = -C + C = 0.$$

But the N+1 rows of (J, C) are just the coefficients of equations (2) and (3). Hence, the T-N-1 linearly independent columns of $\begin{pmatrix} -J^{-1}C\\ I \end{pmatrix}$ span the null space of (J, C) and thus are equivalent to the T-N-1 homogeneous solutions V_{mtj} of equations (2) and (3). This construction provides a convenient method of calculating the homogeneous solutions. The equivalence between (1) and (10) follows upon taking the natural logarithm of equation (10):

$$\sum_{m=0}^{M} \sum_{t=1}^{I_m} \sigma_{mt} V_{mtj} \ln \left(\frac{\omega_{mt}}{C_{mt} \omega_{m0}} \right) = 0, \qquad j = 1, ..., T - N - 1.$$

Finally, note that if the ω_{mt} corresponding to the columns of J are positive, but some of the remaining ω_{mt} are zero, then the constrained derivative (9) may be positive for those components d_r which are zero. Hence equation (10) must be supplemented with the complementary slackness condition $d_r \delta f / \delta d_r = 0$.

REFERENCES

- [1] U. Passy and D. J. Wilde, Mass Action and Polynomial Optimization, Journal of Engineering Mathematics, 3 (1969) 325-335.
- [2] D. T. Phillips, Geometric Programming with Slack Constraints and Degrees of Difficulty, AIIE Transactions, (1973) 7-13.
- [3] G. V. Reklaitis and D. J. Wilde, Necessary Conditions for a Local Optimum without Prior Constraint Qualifications, in *Optimizing Methods in Statistics*, J. S. Rustagi (ed.), Academic Press, New York (1971).
- [4] M. Avriel, M. J. Rijckaert and D. J. Wilde, Optimization and Design, Prentice-Hall, Inc. (1973).
- [5] D. J. Wilde and C. S. Beightler, Foundations of Optimization, Prentice-Hall, Englewood Cliffs, New Jersey (1967), Chapter 3.